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Abstract

The anisotropic extinction and absorption coefficients of a high porosity material with a semi-transparent solid phase are directly
obtained from identification of the statistical cumulated distribution function of extinction distances in the material, linked to that of
the chords, and the corresponding function in the equivalent semi transparent medium. The bidirectional phase function is then deter-
mined without any hypothesis. The model only requires the knowledge of the material morphology, given by a X-ray tomography and

the phases local radiative properties.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate calculations of radiative transfer in porous
media are required in many applications such as catalytic
combustion, thermal shields, nuclear safety of corium, fuel
cells (SOFC), etc. The characterization of the radiative
properties of these media is a key point for these calcula-
tions. Most of the characterization methods are based on
the identification of parameters, such as absorption and
scattering coefficients and the parameters of a phase func-
tion of an assumed type. This identification is carried out
between reference results, issued from experiments or cal-
culations, and results issued from a given transfer model.
Consequently, the identified parameters often depend on
the chosen radiative transfer model.

Works based on identification methods applied to por-
ous media and using calculated reference results are first
presented. An identification of absorption and scattering
coefficients of randomly packed beds of uniform diameter
spheres has been carried out by Yang et al. [1]. In this
work, the transmittance and reflectance have been calcu-
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lated by a reference Monte Carlo transfer model and by
a two flux transfer model for the semi-transparent equiva-
lent medium. Argento and Bouvard [2] have developed
similar works using ray tracing calculations as reference.
Subramaniam and Mengiic [3] have determined from a
Monte Carlo method, for a medium of known extinction
coefficient, both the albedo and the asymmetry parameter
g by assuming the type of phase function. Also for packed
beds of spheres, Singh and Kaviany [4,5] have taken into
account the screen effect by phenomenological scaling
factors applied to additive absorption and scattering
coefficients calculated from the Mie theory. The reference
results are issued from reflectance and transmittance calcu-
lations by a Monte Carlo approach. Fu et al. [6] have iden-
tified the extinction coefficient and the albedo of a set of
spheres from reflectance and transmittance data obtained
both by a reference calculation based on a unit cell model
and a zonal approach, and by a discrete ordinate method
using an isotropic scattering phase function of a given type.
Coquard and Baillis [7-9] have also taken into account the
screen effect of a packed bed of semi-transparent spheres,
of optical index assumed equal to the propagation medium
index. They have used a Monte Carlo technique to directly
compute the collimated intensity and obtained the extinction
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coefficient. The albedo and the phase function parameters
have been identified from emerging intensity data obtained
both by a reference model using a Monte Carlo technique
and by a discrete ordinate model. Brewster [10] has devel-
oped a simple model, based on a mean extinction distance,
in order to compute the extinction coefficient of a packed
bed by taking into account the particle volume effect.

Other identification methods are based on reference
measurements. Glicksman et al. [11] have measured the
directional transmissivity of foam and glass fiber by using
a CO», laser. They have identified absorption and extinction
coeflicients and phase function from simple solutions of the
RTE equation. Hendricks and Howell [12,13] have experi-
mentally determined hemispherical reflectance and trans-
mittance of high porosity ceramics and of sets of opaque
identical spheres randomly distributed. For both media,
absorption and scattering coefficients and different types
of phase functions have been identified by using a discrete
ordinate transfer methods. The same authors [14] have also
developed a new radiative analysis approach, based on the
previous reference and transfer method, applied to reticu-
lated porous ceramics. In this approach, the direct trans-
mittance is treated separately from the transmittance
issued from interactions with internal structures. Baillis-
Doermann et al. [15-18] have carried out similar works
for open cell foam insulation. The originality of these
works is to use predicted expressions of absorption and
extinction coefficients from simple geometrical calcula-
tions. These expressions depend on the local opaque
medium reflectivity which is identified, as the phase func-
tion parameters, by a technique similar to those of Refs.
[12-14]. The characterization of radiative properties of dis-
persed media is also reviewed in Ref. [19].

In all the previously cited approaches, the absorption
and extinction coefficients and the phase function of a med-
ium equivalent to the porous medium have been identified
from global radiative data, such as transmittance or reflec-
tance measurements or calculations, and by using a given
radiative transfer model for a system (slab, cylinder,...).
Tancrez and Taine [20] have determined the same type of
radiative properties directly from their local definitions,
linked to the definition itself of a semi-transparent medium,
i.e. independently of any radiative transfer model. A direct
general determination method of the scattering and
absorption coefficients and of the phase function of high
porosity media, with a transparent fluid phase and an opa-
que solid phase, has been developed. It is valid for wave-
lengths which are small compared to the typical structure
length, so that diffraction is negligible. The method has
been applied to virtual statistically isotropic and homoge-
neous media. The absorption and extinction coefficients
are obtained from both the morphological properties of
the porous media and the local radiative properties of the
opaque solid phase by radiative distribution function iden-
tification (RDFI). In this method, the cumulated distribu-
tion functions of extinction and absorption of the real
porous medium obtained by a stochastical Monte Carlo

method are identified with the corresponding cumulated
functions in the equivalent continuous semi-transparent
model. It has been established in Ref. [20] that for a poros-
ity higher than 0.65, the extinction and absorption coeffi-
cients f and k, are accurately obtained.

The aim of the present paper is to generalize the RDFI
method to a porous medium with a solid semi-transparent
phase and to implement it for a real porous medium, which
is also statistically anisotropic. The morphology of this
porous medium has been obtained by a monochromatic
X-ray tomography at the European Synchrotron Radiation
Facility (ESRF).

In Section 2, the generalized RDFI method is presented.
Its aim is to determine the extinction and absorption coeffi-
cients of the equivalent semi-transparent medium, depend-
ing on direction of the incident rays and the associated
phase function. A key point of the method, the character-
ization of the interfacial impacts of rays used in the Monte
Carlo approach, is discussed in Section 3. The method has
been eventually applied to a mullite sample and the results
are presented in the last Section.

2. Generalized RDFI method

First, the approach of Ref. [20] is briefly summarized. It
is generalized then to a porous medium with a semi-trans-
parent solid phase, for the determination of the extinction
and absorption coefficients and the phase function of an
equivalent semi-transparent continuous medium.

A radiative distribution function identification (RDFI)
method has been applied to a porous medium with a transpar-
ent fluid phase and an opaque solid phase in Ref. [20]. It is
based on a statistical formulation of the physical laws of radi-
ation. The main idea is to determine the extinction coefficient
f of a continuous semi transparent medium equivalent to the
porous medium by identification of the extinction cumulated
distribution function G(s) of the real porous medium with the
corresponding extinction distribution function of the semi-
transparent medium g.(s) equal to 1 — exp(—fs) by a least
square fit method. The same identification is made between
the real porous medium absorption cumulated function
G,(s) and the equivalent medium absorption cumulated func-
tion p,(s) equal to x,/p[1 — exp(—pPs)] to obtain x,, absorption
coefficient of the equivalent medium. s is the current distance
in the equivalent semi-transparent medium. As detailed in
Ref. [20] (see Fig 1.a. of this Ref.), Gi(s) is in fact the cumu-
lated distribution function of the distance between a current
point M of the fluid phase and its impact point / on the solid
phase along a ray. Each impact of a ray corresponds to an
absorption or a reflection phenomenon, i.e. to extinction as
shown in Fig. 1a. G,(s) is then associated with the absorption
at the impact point /. In practice, G¢(s) and G,(s) are calcu-
lated by using a Monte Carlo approach and by generating a
huge set of rays from any current point M of the fluid phase.
The identifications between Gg(s) and gq(s), and G,(s) and
pa(s) are carried out for an optical thickness fis in the range
[0,3], of interest for a semi-transparent medium.
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Fig. 1. Reflection, transmission and scattering configurations: (a) opaque solid phase; (b,c,d) semi-transparent solid phase; (e) different events in a slab s,
s + ds for an incident intensity 7, in the normal direction uy; sc¢ and a represent scattered and absorbed rays in the solid phase; r; and r; scattered rays at the

interface.

The scattering phase function p,(u,u,) of the equivalent
semi-transparent medium is directly calculated as the distri-
bution function associated with the probability that, in the
spherical frame of axis u, the reflected ray belongs to an ele-
mentary solid angle dQ(u,), depending on the interface
reflection law.

We now consider the identification of the extinction and
absorption coefficients f, and k, and the phase function
p(u,u’) of a unique semi-transparent medium associated with
a statistically anisotropic porous medium with a transparent
fluid phase and a semi-transparent solid phase. As previously,
an originality of the method is to identify f3,, x, and p,
directly from their definitions. But an important difference
is that the rays to be considered are issued from current
points M belonging to both the fluid and the solid phases.

The solid phase is now characterized by an optical index
n, absorption and scattering coefficients kg, and 65, and a
phase function pg,.

2.1. Establishment of the equivalent RTE

In this subsection, the use of a radiative transfer equa-
tion (RTE) for a unique equivalent semi-transparent med-
ium associated with a porous medium with a fluid phase 1
and a solid phase 2 is justified. Two coupled specific RTE

d[;\,(u)
In,———=+11,. 1,
LW 11,0 (w)
:Hi”%Ki»vI:(Ti)‘i‘Hi Ti / piiv(u7u,)li\’(u,)dgl
477: 4n
e, [ e wee, =124 ()
T Jan -

can be written for these phases, where I1; is the volume frac-
tion of the phase i (I1| = II, 11, = 1 — II); I;(u) the incident
intensity in the current solid angle dQ2 within the phase ; n;,
P, Kiv the optical index and the extinction and absorption
coefficients of this phase; g;;, the partial scattering coeffi-
cient of the phase i associated with: (i) partial reflection of
I,(u’) at the interface inside this phase, as shown in
Fig. 1b and c; (ii) partial scattering of I;,(u’) inside a semi-
transparent phase, as shown in Fig. 1d; p;;(u,u’) the phase
function associated with ¢;;,; 6;;, the partial scattering coef-
ficient of the phase j associated with the partial transmission
of I;,(u’) from the phase j to the phase i through the inter-
face, as shown in Fig. 1b and c; pj(u,u’) the associated
phase function. The terms containing ¢;, couple the RTEs.

In the model considered here, based on a unique RTE
for the whole porous medium, an assumption is required
in order to define the unique intensity /, in the current solid
angle dQ. We assume that 7, is an effective intensity

Iv(ll) = I]v(ll) = Izv(ll). (2)

From Egs. (1) and (2), we obtain the whole porous medium
RTE

d7,(u)
ds

g,

+ B, (u) = nigr,d5(T) + an ),

p,(u,u),(u)de
(3)

in which appear the equivalent coefficients X, equal to
Inx,,+ (1 — I)X,,, where the X;, designate x;, and f;.
The phase function p, is given by

p(uu’) = ”fl{anv(“,“/)Ulhr + Py (u, ul)UIZv]
+ (1 = 1) [pyy, (u,0) 025, + pyy, (w0021 ]}. (4)
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By following the arguments (i) and (ii) of the previous dis-
cussion, we can write:

refl

Py (0, 0) 0, = pi5(u, W) 053, + i, (u,0) g, (5)
refl

where pil(u,u')es! corresponds to the internal interfacial
reflection and pg,(u,u’)og, to the real scattering in the vol-
ume of the solid phase. The effective optical index ey is
equal to

—+ (1 — H)I’l%sz. (6)

The phase 1 is here transparent, ITn;k;, vanishes and reg, is
equal to n.

In the following, all the radiative properties of the equiv-
alent semi transparent medium f,, x, and p, are determined
by the RDFI method.

2 — 77,2
N Ky = IInjky,

2.2. Extinction and absorption coefficients

In the generalized method, absorption occurs within the
solid phase and different phenomena which occur in the por-
ous medium are modeled as scattering in the equivalent con-
tinuous medium: reflection and transmission at the interface
between the two phases and scattering into the solid phase
here also modeled as semi-transparent. In any case, extinc-
tion by scattering and absorption is stochastically modeled
from the distribution function of the distance M1 of a current
ray from a source point M to an extinction point /, where it
vanishes. Indeed all the types of extinction phenomena are
associated with the following set of events: (i) if M is in the
transparent fluid phase, the ray vanishes once it impacts
the solid phase at the point 7 of the interface, as shown in
Fig. 1b; (i1) if M is in the semi-transparent solid phase, it van-
ishes by two ways, by impacting the interface at the point / as
shown in Fig. Ic or by extinction at the point 7 of the solid
semi-transparent phase, i.c. by scattering or absorption, as
shown in Fig. 1d. These phenomena depend both on the por-
ous medium geometry and on the local radiative properties of
the solid phase. All these absorption and scattering phenom-
ena are also summarized in Fig. le, for an elementary interval
s, s + ds of the porous medium normal to the uy direction of
the incident intensity /,. In these conditions, in the Monte
Carlo approach applied to the local scale of the porous med-
ium, the extinction cumulated distribution function associ-
ated with a given direction of unit vector uy is equal to the
cumulated distribution function of the length MI, i.e.

G.(s,uy) VAQk/ //AQk [ — so(r,u)] dQ(u)drds’,
(7)

where s is the current distance from the source point M
along the current ray, of unit vector u and elementary solid
angle dQ(u); so(r,u) the distance from M to the extinction
point 7 at the interface or within the semi-transparent solid
phase as previously explained; AQ(uy) a discretized solid
angle; 0 the Dirac function. The summation is carried out
on the whole volume of the porous medium V, with the

same weight for each elementary volume of the two phases;
it is a consequence of the discussion of the introduction of
Section 2.

In the continuous medium approach, the extinction is
simply characterized by f,(uy) and the cumulated extinc-
tion distribution function

ge(s,m) = 1 — exp[—f, (ux)s]. (8)

As in Ref. [20], f,(uy) is determined by identification of
Go(s,ux) and g.(s,ux) by a least square fit method. The
validity range of this identification can be deduced from
the relative error function e(f3,), 1.e.

N 12
ee(ﬂv)_{Z[Ge(Shuk) ge(si,uy)] Zl_ Sla“k)} )

©)

where s; are discretized values of s in the range [0, 3] of fs.

As previously explained, absorption only occurs in the
semi-transparent solid phase. The probability of absorp-
tion by the porous medium between the distances s and
s+ ds from a source point M is written

1 1
Vv AQ ds /VS /Agk KysOls — so(r,u)] dQ(u)dr,
(10)

where K, is the absorption coefficient of the semi-transpar-
ent solid phase; so(r,u) is now the distance from M to an
absorption point / within the solid phase. It is worth notic-
ing that the sum in Eq. (10) is only carried out for the vol-
ume Vg of the solid phase. The normalization by the
volume V' of the whole medium allows us to implicitly take
into account the porosity of the medium as discussed in the
introduction of Section 2. The corresponding probability
of absorption for the equivalent continuous medium mod-
el, dpa(s,uy) is

dGa(S7 llk) =

dp, (s,ux) = exp[—f, (ux)s]x, (ug) ds, (11)

where x,(uy) is the continuous medium absorption coeffi-

cient determined by identification of the cumulated absorp-
tion probability G (s,uy), i.e.

G (s, m) = / " 4G (s m) (12)

with the corresponding sum of Eq. (11), i.e. /B, exp(—B,s),
with an identification relative error function €,(x,),

1/2
{ Snuk pd Slauk E Snuk } .

(13)
2.3. Phase function

Mz

i=0

For an opaque solid phase, the phase function of
the equivalent medium is only due to the reflection at the
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interface between the two phases of the porous medium as
shown in Fig. la. Its expression, given in Ref. [20], is

pv (u7 ul‘)
i dQ,(u,)

dQ,(u;) pr P!, up,n(u,r)]u-n(u,r)(dr/Vr)
" Jaa Jy. Pt usn(u,n]u - n(u)(dr/V5) d2,(u,)

(14)

with p”[u, u,, n(u, r)] the bidirectional reflectivity defined by
Siegel and Howell [21], u, u, the unit vectors of the incident
and reflected rays shown in Fig. le. Let us briefly comment
this equation. The direction u of the incident ray is given.
In practice, the sum over Vy corresponds to random
choices of a source points M(r) within the fluid phase. Con-
sequently, the impact point 7/ is determined, which leads to
the normal unit vector n depending on u and r.

In fact, in our case, there are now five types of contribu-
tions to the global phase function of the equivalent
semi-transparent medium i.e. pi1,, P12y, P2lvs p;;f}, and
ps, introduced in Egs. (4) and (5). Let us remember that
in these expressions, the index 1 refers to the fluid
phase and the index 2 to the solid phase. The expressions of
P11y and pie! which deal with internal reflection in fluid and
solid phases respectively, are similar to that of p, in Eq.
(14); p’[u, u,, n(u,r)] is now the interfacial bidirectional
reflectivity. The sum is carried out on Vg instead of Vi
for p5l. The expression of pi,, is deduced from Eq. (14)
by replacing u, by u; and the reflectivity p”[u, u;, n(u,r)]
by the interfacial transmissivity t”[u, u, n(u, r)]. In the
case of p»y,, the sum on Vy is moreover replaced by a
sum on V. Under the assumption of an optically smooth
interface for the considered radiation wavelength, the bidi-
rectional interfacial reflectivity p} and transmissivity 7, are
calculated by using the Descartes law depending on the
optical index of the two media, given for instance in Ref.
[22]. But, more general expressions of p” and 1’ can be used
to take into account effects of interface roughness at a
small spatial scale, which is not included in the morpholog-
ical definition of the material.

3. Characterization of the interfacial impacts of the rays

In practice, the morphological properties of a real por-
ous medium are often issued from a X-ray tomography
and defined as a tridimensional set of voxel intensities asso-
ciated with the tomography technique in use. In these con-
ditions, the aim of this section is to define how to obtain, in
the RDFI method, both the location of the impact point 7/
of a current ray M1 at the interface between the two phases,
and the normal vector at this interface at the point I. The
aim of this section is to discuss the validity of the determi-
nation of / in the case of a simulated tomography of a vir-
tual statistically isotropic porous medium.

The virtual medium is a set of dispersed overlapping
transparent spheres (DOTS) in a solid opaque phase as
defined in Ref. [20]. As this type of media has been exten-
sively studied in this last paper, its results are here consid-

ered as references. The reference case is a set of DOTS
characterized by a porosity IT of 0.8 and a Gaussian radius
distribution R;=r(1 + dx) where r is the mean value of
(R;), x the normalized Gaussian variable and ¢ the stan-
dard deviation equal to 0.25.

The studied virtual medium is divided into »* cubic vox-
els of edge a. In the considered simulation, each voxel has
numerically been characterized by a digitalized intensity
level in the range [0,255] equal to the integer part of
255(1 — I y), where Iy is the voxel porosity, of which cal-
culation is detailed in Ref. [23]. The key parameter of this
study is the resolution parameter D/a, where D is the mean
pore diameter. The interface, determined by the simulation,
is defined as a surface X; characterized by a given threshold
intensity value 7, which has to be chosen consistent with
the medium porosity I1. Any voxel characterized by an
intensity bigger (smaller) than the threshold is then consid-
ered in the solid (fluid) phase. The simulated interface is
defined by a marching cube algorithm [24,25], which is
based on the interpolation of the positions of the triangle
vertices defining the isosurface X in a cube built with 8
voxels of the tomography.

After this step, the general Monte Carlo approach of
Ref. [20] has been applied. The extinction coefficients val-
ues of the simulation are compared with the corresponding
results directly obtained in Ref. [20] in Fig. 2a. The accu-
racy of the determination of G, is characterized by a stan-
dard deviation criterion oyc defined as

12
omc = {Z[Gei+l(5j) - Gei(Sj)]z} ; (15)

J

where the index i deals with the successive sets of rays in
use in the Monte Carlo calculation. In Eq. (15), the
i+ 1th set of rays contains ten times more rays than the
ith set. omc is typically equal to 2x 1072 for 10° rays.
The parameter e(f) which characterizes the identification
error of G, and g., defined by Eq. (9), is equal to
1.5 x 1072, The influence of the choices of I, and D/a on
the identified radiative properties are shown in Fig. 2a
and b. For instance, it appears in Fig. 2a that, for D/a close
to 10, the relative error e between the reference value of f§
and the corresponding value issued from the simulation is
minimal and less than 3 x 1073, for a threshold intensity
close to 180. It is worth noticing that this threshold inten-
sity value used in the simulation leads to the virtual
medium porosity. Fig. 2b will be used to define the require-
ment of the tomography in the next Section. The accuracy
of the determination of the normals by the marching cube
approach can be estimated by the comparison of the distri-
bution function F(y;) of y; the cosine of the incidence angle,
obtained from both the marching cube method and the ref-
erence analytical calculations of Tancrez and Taine [20].
Indeed the phase function only depends on F(x;) and on
the reflection law. Typical results are shown in Fig. 2c; they
agree for all the range [0; 1] of w; values.
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Fig. 2. (a) Relative error € = (Brer — Psimul)/Prer Vs the threshold intensity and the resolution parameter D/a: IT = 0.8; Gaussian distribution. (b) Minimum
relative error € = (Bret — Psimul)/Prer VS the resolution parameter D/a: IT = 0.8; Gaussian distribution. (c) Distribution function of the incidence angle cosine
F(u;) calculated: — analytically as in Ref. [20], (+) by the marching cube method. D/a = 160; IT = 0.8; DOTS.

4. Application to a real anisotropic porous material
4.1. Studied material

The material is a mullite foam of EcoCeramics, Nether-
lands, of porosity 0.85, used in foam burners. It is charac-
terized by three scales of porosity, the smallest ones have
been determined by a mercury porosimetry as shown in
Fig. 3. The corresponding typical pore sizes are 1 and
40 um. The typical largest pore size, non-measurable by
this technique, is 300 um. The interest of this material, rea-
son of its choice, is that the three ranges of the pore distri-
bution do not overlap; three partial porosities 0.40, 0.11
and 0.34 can be crudely associated with the typical pore
sizes 1, 40 and 300 um, respectively.

The local radiative properties of the solid phase, associ-
ated with only the 1 um pores, have been experimentally
determined by Zeghondy et al. [26] for the 0.6328 um wave-
length. Consequently, we have not to take them into
account in the Monte Carlo spatial model. The values of
the real index n, the extinction coefficient g and the albedo
ws determined in Ref. [26] are 1.48, 105 mm ' and 0.993,
respectively. The phase function of the sample is, in the fol-
lowing, assumed to be isotropic (ps, = 1). This assumption
has been justified in the sensitivity study to the phase func-
tion in Section 3.2. of Ref. [26]. It is worth of noticing that
the typical element of the solid phase of about 0.08 to

0.4

o °
N w
T T

IS
-
T

Differential Intrusion (ml/g)

oY e B w . .
1000 100 10 1 0.01
Diameter (um)

e

Fig. 3. Differential intrusion results measured by mercury porosimetry.

0.1 mm. The corresponding extinction thickness is of about
10 which is of the same order of magnitude as the solid
sample optical thickness. In both cases, the materials are
in the thick optical thickness limit.

The bidirectional transmissivity 7/ and reflectivity p”
defined in Section 2.3 have been calculated with the Des-
cartes law [22], i.e. by considered the interface as optically
smooth. The effect of the interface roughness is discussed in
Ref. [26]. The dimensions of the sample to be tomographed
have been chosen from a simple analysis. The largest dis-
tance to be accounted for in the cumulated distribution
function G, is linked to the largest pore sizes. If the medium
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Fig. 4. (a) Tomographed sample and shooting volumes 4, B and C; (b) spherical coordinates according to the sample axes, M is a current original point

inside a shooting volume.

is crudely modeled by a set of dispersed overlapping trans-
parent spheres of 300 um mean pore diameter D, the criti-
cal length s, corresponding to an optical thickness of 3, is a
function of the porosity IT and D, ie. s.= —0.8D/
[In(1 — IT)(IT"" — 1)] as established in Ref. [20]. s, is then
about 1 mm. From this analysis the dimensions have been
chosen sufficiently large in order to: (i) avoid boundary
effects associated with possible downgraded pores close to
the boundary; (ii) allow us to characterize the spatial
homogeneity of the medium. Consequently, we have cho-
sen to tomograph a cylindrical sample of 10 mm diameter
and 10 mm height, shown in Fig. 4a.

A key point is to choose a spatial resolution of the
tomography applied to the sample. The two largest pore
size ranges, centered in 40 and 300 pm, have to be accu-
rately modeled. As shown in Fig. 2b, a spatial resolution
close to 5 pm associated with a size parameter D/a =8
for the 40 um pores, corresponds to an acceptable accuracy
of 5x 1072

In practice, the intensity matrix of this real porous med-
ium has been obtained by X-ray tomography [27,28] at
ESRF (line ID19), Grenoble, France with a spatial resolu-
tion a of 4.9 ym. The required storage volume for the
whole sample corresponds to about 8x 10 voxels, i.e.
8 Gb.

4.2. Implementation of the Monte Carlo approach

In order to calculate G., G, and p,(u,), a Monte Carlo
technique has been used, based on a huge number of rays,
issued from random source points M in the whole porous
medium, typically 10°. The first step consists to choose a
ray unit vector u, and a point M in the shooting volume
of the sample, i.e. a representative volume of the sample
from which rays are issued.

If M is in the fluid phase, extinction only occurs in a
point I of the interface. The marching cube algorithm,
which allows us to determine X, is based on a moving cube
of 8 adjacent voxels generated around the current discret-
ized abscissis s; from M along the followed ray. If, at a
given step, the marching cube contains a part of the inter-
face X the existence of any intersection with the ray will be

checked by an algorithm. If there is no intersection a new
marching cube is defined around the following abscissis
si+1. In case of intersection, the first impact point [ is deter-
mined and the extinction distance M[ is a contribution to
G., as shown in Eq. (7). The normal unit vector to the inter-
face n at the point 7 is defined and the different contribu-
tions to the phase function are obtained as explained in
Section 2.3, by using equations similar to Eq. (14).

If M is in the semi-transparent solid phase, of extinction
coefficient Bs, an extinction length dg= —In(&)/fs is
deduced from a random number &, generated in the range
[0,1]. The same algorithm as in the fluid phase is then used
to determine an interfacial extinction distance MI. If there
is a point / of the interface such as MI <dg the previous
procedure is applied. If not, dg is also a contribution to
G.. In this case, a second random number &, is generated
in the range [0, 1]. If &, is smaller than kg the ray is assumed
absorbed; ds is then contribution to G,, as shown in Eq.
(10). If &, is higher than kg the ray is scattered; the two
scattering angles defining the unit vector u,, are obtained
from the scattering phase function of the solid phase by
classically generating two associated random numbers.

4.3. Results

In order to check the statistical homogeneity of the
results, the mullite sample defined in Section 4.1 has been
divided into three cylindrical shooting volumes called A4,
B and C shown in Fig. 4a; each of them is characterized
by a 6 mm diameter and 2mm height. The distance
between a shooting volume border and the sample border
has been chosen at less two times higher than the 1 mm pre-
viously estimated length, in order to avoid artefacts due to
the degradation of the structure in the vicinity of the sam-
ple border. It is also worth noticing that the size of a shoot-
ing volume has been chosen larger than the cumulated size
of 1000 cubic shooting volumes in use in Ref. [20]. This
choice allows us to obtain statistically representative
results.

In order to take into account the statistical anisotropy of
p, and k,, Monte Carlo calculations have been carried out
for 400 solid angles AQ centered in the directions defined



B. Zeghondy et al. | International Journal of Heat and Mass Transfer 49 (2006) 2810-2819

by the angles 0 and ¢ defined in Fig. 4b. The 0 and ¢ angles
have been incremented in such a way to uniformly cover 47
steradians, i.e. with Acos(0;) = 1/10 and A®; = n/10. The
number of generated rays is equal to 2.5 x 10° per solid
angle. At this limit, the obvious symmetry condition
p.(0,¢) = B(r — 0,7+ ¢) has been checked.

Two levels of calculations have been carried out due to
the huge memory capacity required by all the 8 x 10° voxels
defining the sample and the huge required computational
time, especially for the phase function. A complete direc-
tional study has been first achieved with a downgraded
spatial resolution ¢’ = 19.6 pm, equal to 4 times the tomo-
graphy resolution. In these conditions, the D/a parameter
defined in Section 3 is equal to 15 for the largest pore size,
which leads to a typical accuracy criterion of 102, but only
equal to 2 for the middle size pores, which does not theo-
retically lead to a sufficient accuracy criterion. In a second
step, a limited number of calculations with a spatial resolu-
tion of 4.9 um have been carried out for a limited number
of directions.

With the downgraded spatial resolution, the results
related to f8, and «, vs 6 and ¢, averaged by using the three
shooting volumes 4, B and C, have been first considered. A
typical example of identification of G, and g, is given in
Fig. 5. Due to the cutoff related to the medium size pore
distribution, G, is not continuous, for intermediate optical
thicknesses. The relative standard deviation opgc, associ-
ated with the calculation of G.(0,¢) and defined by Eq.
(15) is in the range [3.53 x 107, 8 x 10~*]. Results related
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to the 400 directions are shown in Fig. 6a and c for f,
and «,, respectively. The relative error function &(f3,), asso-
ciated with the determination of f3, by identification of G,
and g. and defined by Eq. (9), is in the range [0.03,
0.045], as shown in Fig. 6b and will be discussed later. This
error criterion is important in practice for radiative heat
transfer calculations insofar as G, is a transmissivity in
use in such discretized calculations. A simple representa-
tion of the results is given by the dependence of the direc-
tional extinction length / = 1/8 vs 0 and ¢. This quantity is
accurately fitted by the ellipsoid (x*/> 4+ y*/ 2 + 22/ = 1)
where /,, [, and [, are the extinction lengths associated with
the three principal axes Ox, Oy, Oz of the ellipsoid, equal
to 0.195, 0.231, 0.208 mm, respectively. The relative least
square error due to the identification by the ellipsoid from
original f8, data is 3.3 x 107°. The angle between the princi-
pal axis of the ellipsoid Oz and the axis OZ of the sample
defined in Fig. 4b is equal to 3°. This angle could simply
come from the inclination of the sample on the optical
setup at ESRF. It is worth of notice that the error associ-
ated with the identification of the results with an ellipsoid
is much smaller than the error e(f,) associated with the
identification of G, and g. and can be here neglected.

The statistical homogeneity of the sample has been
established by considering, for the three axes of the ellip-
soid, the relative standard deviations oy /B, (i = x,y,z)
corresponding to three independent treatments of the
shooting volumes 4, B and C with the downgraded spatial
resolution. These relative standard deviations less than
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Fig. 5. Example of identification of G.(s) (solid line) and g.(s) (circles); (a) downgraded spatial resolution (¢’ = 19.6 um) ; (b) high spatial resolution

(a=4.9 pm).

o 4.5 . « PR o
200 T~ = 200 ™~
~ " 400 o
100 ™~ %00 100 ™~
0 (deg) 0o ¢ (deg) 0 (deg)
(a)

0o

(b)

200

¢ (deg)

Fig. 6. (a) Identified directional extinction coefficient f8, for the 0.6328 pm wavelength and a’ = 19.6 um. (b) Directional identification error e.(f,). (c)
Identified directional absorption coefficient x, for the 0.6328 pm wavelength and ¢’ = 19.6 um.
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0.016 are smaller than the identification error e.(f3,;) in the
range 0.034-0.042. The sample can be considered as statis-
tically homogeneous.

It also appears that the discrepancies between the mean
value of B,, and f,,, 5.13 and 4.81 mm ", respectively are of
the same order of magnitude as the typical absolute error
0.2 mm ' associated with e.(f,), error important for any
radiative heat transfer calculation. On the other hand, the
discrepancies between f,. (equal to 4.33 mm™') and f,, or
B,, are typically of about 0.7 mm~ !, i.e. at least three times
larger than the previous typical error. In a first approach,
the field of f, can be considered as axisymmetric around
axis Oz. A limited number of calculations have been carried
out for the ultimate tomography results (¢ = 4.9 um), for
only the shooting volume A and the three principal direc-
tions of the previously obtained ellipsoid x, y and z. Only
10° rays have been generated for each direction in this case.
It is worth of notice in Fig. 5b that the obtained G, func-
tion is more continuous than previously for intermediate
optical thicknesses. But due to weak number of generated
rays, 25 times weaker than previously, the standard devia-
tion associated with G. is in the range [107>,2x 107°].
Table 1 shows the results f,;, obtained with the high spatial
resolution for the principal axis x, y and z, compared to
those obtained with the low resolution. It is shown that:
(1) the identification error in the f3,; determination €(f},)
is similar to the previous corresponding error, despite of
the weak number of rays; (ii) the relative discrepancy
between the values of f3,,, obtained with the two spatial res-
olutions are less than 2% for the three directions. In these
conditions, the results obtained with the downgraded reso-
lution can be considered as representative.

Table 1
Comparison of the two levels of f identification

X y z
B (mm ") 5.03 4.75 4.28
ean(fy) 0.038 0.035 0.031
By (mm™1) 5.13 4.81 433
el By 0.042 0.038 0.034
€ 0.0195 0.0121 0.0118

The index / is associated to the high spatial resolution ¢ = 4.9 um; / to the
low spatial resolution a = 19.6 um; €, = (B — Buii)/ Boni-

Phase Function
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It is also worth of notice that the tomographed sample
has been correctly defined. In fact the chosen 1 mm critical
length s, corresponds to an optical extinction thickness of
4.3, which is a value larger than the cutoff of 3 used in
our approach. The determined directional absorption coef-
ficients k, are shown in Fig. 6¢c. Depending on the direc-
tion, k, varies in the range [0.01,0.0115] mm~'. A typical
value of the albedo w is about 0.999.

At this step, it is worth noticing that the identification of
p, and k, have been also carried out under the arbitrary
assumption that the medium is statistically isotropic, by
determining the corresponding isotropic values of these
quantities. The interesting fact is that the identification
error is then of the same order than the one associated with
the anisotropic assumption. This fact enhances a limitation
of the identification methods based on too simplified mod-
els. The identified phase function defined in Eq. (14) only
depends, in practice, on the cosine of the scattering angle
Us =u-u’" as shown in Fig. 7a and b. Indeed, the standard
deviation o(y,) shown in Fig. 7b, associated with the 400
considered directions is much smaller than p(y,) for any
us value. Contrary to the cases of f, and «,, p, does not
depend on the current direction u. In practice, this phase
function is isotropic for p, smaller than 0.75 and exhibits
a sharp maximum in the forward direction.

5. Conclusion

We have associated with the porous considered material
a unique equivalent semi-transparent medium. The direc-
tional extinction and absorption coefficients of this medium
have been determined from both tomography discretized
data and the radiative properties of the semi transparent
solid phase. The phase function of the equivalent medium,
which only depends on the scattering angle, has also be
determined.

All these results have been compared to experimental
results and validated in Ref. [26]. Indeed, the data obtained
in the present work have been used in a Monte Carlo trans-
fer model in order to directly calculate the bidirectional
reflectance of the sample vs three incident angles. Rela-
tive discrepancies between calculated reflectance and
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Fig. 7. (a) Directional phase function p(y,) averaged on the 400 incident directions; 2 = 0.6328 pm; ¢’ = 19.6 pm. (b) Standard deviation over p(y).
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measurements are only of a few per cent. It is a first valida-
tion case of the RDFI method.
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